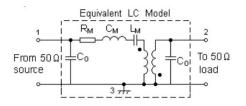


SAW RESONATOR Part Number : VTR392B

The VTR392B is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile metal TO-39 case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 392.000 MHz.

1. Package Dimension (TO-39)

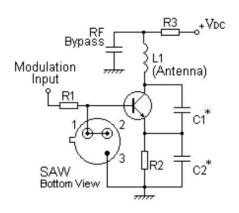


Pin	Configuration		
1	Input / Output		
2	Output / Input		
3	Case Ground		

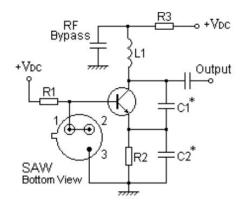
Dimension	Data (unit: mm)		
A	9.15±0.20		
В	5.08±0.20		
С	3.30±0.20		
D	3±0.20 / 5±0.20		
E	0.45±0.10		

2. Marking

3. Equivalent LC Model and Test Circuit

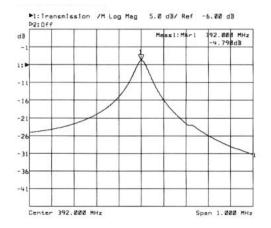


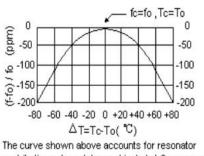
VTR392B


Color: Black or Blue

4. Typical Application Circuits

1) Low-Power Transmitter Application


2)Local Oscillator Application



V.TORCH

5. Typical Frequency Response

6. Temperature Characteristics

contribution only and does not include LC component temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	V _{DC}	±30	V
Storage Temperature Range	T _{stg}	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	fc	391.925		392.075	MHz
	Tolerance from 392.000 MHz	∆f _C		±75		kHz
Insertion Loss		IL		5.5	7.0	dB
Quality Factor	Unloaded Q	Qu		13,850		
	50 Ω Loaded Q	QL		6,500		
Temperature Stability	Turnover Temperature	To	25		55	°C
	Turnover Frequency	fo		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Pins		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		88.5	124	Ω
	Motional Inductance	LM		497.713		μН
	Motional Capacitance	C _M		0.331535		fF
	Shunt Static Capacitance	Co	1.65	1.95	2.25	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The center frequency, fc , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature Tc = +25° C \pm 2° C.
- 3. Frequency aging is the change in fc with time and is specified at +65° C or less. Aging may exceed the specification for prolonged temperatures above +65° C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, To, is the temperature of maximum (or turnover) frequency, f 0. The nominal frequency at any case temperature, Tc, may be calculated from: f = f 0 [1 FTC (T0 Tc) 2].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: fc , IL, 3 dB bandwidth, fc versus Tc , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca