

SAW RESONATOR Part Number : VTR315FB

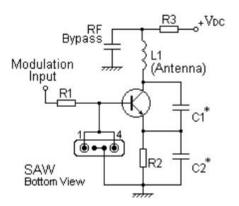
The VTR315FB is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile metal F-11 case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 315.000 MHz.

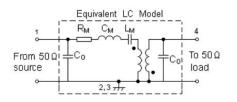
1. Package Dimension (TO-39)

Pin	Configuration		
1, 4	Input / Output		
2, 3	Case Ground		
Dimension	Data (unit: mm)		
Dimension A	Data (unit: mm) 11.0±0.3		

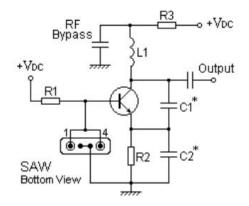
В	4.5±0.3		
С	3.2±0.3		
D	0.45±0.1		
E	5.0±0.5		
F	2.54±0.2		

2. Marking

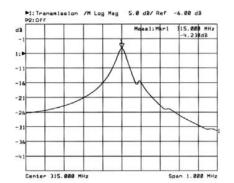

3. Equivalent LC Model and Test Circuit

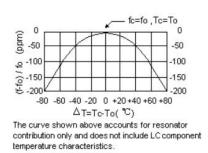

VTR315FB

Color: Black or Blue


4. Typical Application Circuits

1) Low-Power Transmitter Application


2)Local Oscillator Application



V.TORCH

5. Typical Frequency Response

6. Temperature Characteristics

7.Performance

7-1.Maximum Ratings

Rating		Value	Unit	
CW RF Power Dissipation	Р	0	dBm	
DC Voltage Between Any two Pins	V _{DC}	±30	V	
Storage Temperature Range	T _{stg}	-40 to +85	°C	
Operating Temperature Range	T _A	-10 to +60	°C	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	314.925		315.075	MHz
	Tolerance from 315.000MHz	Δf _C		±75		kHz
Insertion Loss		IL		5.0	7.0	dB
Quality Factor	Unloaded Q	Qu	2	15,060		
	50 Ω Loaded Q	QL	-	6,600		
Temperature Stability	Turnover Temperature	To	25		55	Ĉ
	Turnover Frequency	fo		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/'C2
Frequency Aging	Absolute Value during the First Year	f _A	0 5	≤10		ppm/yr
DC Insulation Resis	stance Between Any Two Pins		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		78	124	Ω
	Motional Inductance	L _M	-	593.8732		μH
	Motional Capacitance	См		0.4303		fF
	Shunt Static Capacitance	C ₀	2.15	2.45	2.75	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The center frequency, fc , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature Tc = +25° C \pm 2° C.
- 3. Frequency aging is the change in fc with time and is specified at +65° C or less. Aging may exceed the specification for prolonged temperatures above +65° C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f 0. The nominal frequency at any case temperature, T_c, may be calculated from: f = f 0 [1 FTC (T₀ T_c) 2].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: fc , IL, 3 dB bandwidth, fc versus Tc , and Co .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca