

SAW RESONATOR Part Number : VTR868N

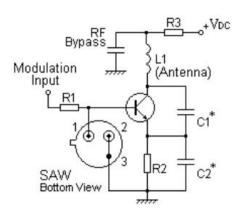
The VTR868N is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile metal TO-39 case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 868.300 MHz.

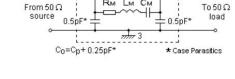
1. Package Dimension (TO-39)

Pin	Configuration		
1	Input / Output		
2	Output / Input		
3	Case Ground		

Dimension	Data (unit: mm)		
A	9.15±0.20		
В	5.08±0.20		
С	3.30±0.20		
D	3±0.20 / 5±0.20		
E	0.45±0.10		

2. Marking


3. Equivalent LC Model and Test Circuit

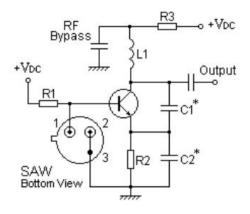


Ink Marking Color: Black or Blue

4. Typical Application Circuits

RM

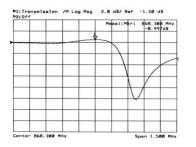
Equivalent LC Model 11^{Cp}

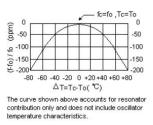

Lм См

Pin 2

To 50 Ω

2)Local Oscillator Application


Pin1



V.TORCH

5. Typical Frequency Response

6. Temperature Characteristics

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	868.150		868.450	MHz
	Tolerance from 868.300 MHz	Δf _C		±150		kHz
Insertion Loss	ē.	IL		1.2	1.8	dB
Quality Factor	Unloaded Q	Qu		12,270		
	50 Ω Loaded Q	QL		1,600		
Temperature Stability	Turnover Temperature	To	25		55	°C
	Turnover Frequency	fo		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Pins		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		15	23	Ω
	Motional Inductance	L _M		33.7434		μH
	Motional Capacitance	CM		0.9967		fF
	Pin 1 to Pin 2 Static Capacitance	Co	2.20	2.45	2.70	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

V.TORCH

- 1. The center frequency, fc , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature Tc = +25° C \pm 2° C.
- 3. Frequency aging is the change in fc with time and is specified at +65° C or less. Aging may exceed the specification for prolonged temperatures above +65° C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f 0. The nominal frequency at any case temperature, T_c, may be calculated from: f = f 0 [1 FTC (T₀ T_c) 2].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: fc , IL, 3 dB bandwidth, fc versus Tc , and Co .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca