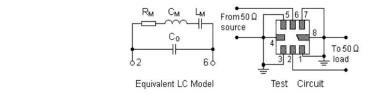


SAW RESONATOR Part Number : VTR86835

The VTR86835 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic QCC8C case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 868.300 MHz.

1. Package Dimension (QCC8C)

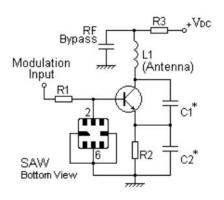


	Pin		Conf	Configuration			
2			Terminal1				
6			Terminal2				
4, 8			Case Ground				
1, 3, 5, 7		Empty					
Sign	Data (uni	t: mm)	Sign	Data (unit: mm)			
				,			

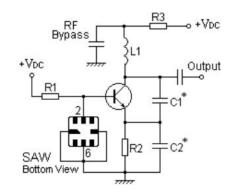
	А	2.08	E	1.2		
	В	0.6	F	1.35		
	С	1.27	G	5.0		
	D	2.54	н	5.0		

2. Marking

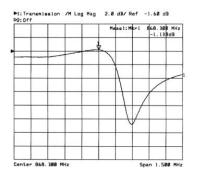
3. Equivalent LC Model and Test Circuit

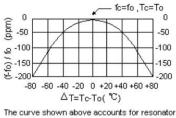

4. Typical Application Circuits

VTR


86835

Laser Marking


2)Local Oscillator Application



V.TORCH

5. Typical Frequency Response

6. Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	V _{DC}	±30	V
Storage Temperature Range	T _{stg}	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	fc	868.150		868.450	MHz
	Tolerance from 868.300 MHz	Δfc		±150		kHz
Insertion Loss	12 12	IL		1.5	2.2	dB
o	Unloaded Q	QU		10,020		
Quality Factor	50 Ω Loaded Q	QL		1,600		
	Turnover Temperature	To	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		fc		kHz
1.000	Frequency Temperature Coefficient	FTC		0.032		ppm/*C
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
	Motional Resistance	R _M		19	29	Ω
RF Equivalent	Motional Inductance	L _M		34.9170		μH
RLC Model	Motional Capacitance	См		0.96317		fF
	Shunt Static Capacitance	C ₀	2.20	2.50	2.80	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

V.TORCH

- 1. The center frequency, fc , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature Tc = +25° C \pm 2° C.
- 3. Frequency aging is the change in fc with time and is specified at +65° C or less. Aging may exceed the specification for prolonged temperatures above +65° C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f 0. The nominal frequency at any case temperature, T_c, may be calculated from: f = f 0 [1 FTC (T₀ T_c) 2].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: fc , IL, 3 dB bandwidth, fc versus Tc , and Co .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca