

SAW RESONATOR Part Number : VTR85402

The VTR85402 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic DCC6 case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 854.000 MHz.

1. Package Dimension (DCC6)

Pin	Configuration
2	Input / Output
5	Output / Input
1, 3, 4, 6	Ground

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.9	E	1.2
В	0.64	F	3.8
С	1.0	G	3.8
D	1.27		

2. Marking

3. Equivalent LC Model and Test Circuit

50

From 50 Ω

source

71 2 3

6 5 4

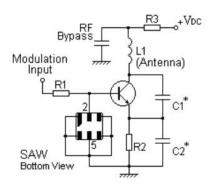
Test Circuit

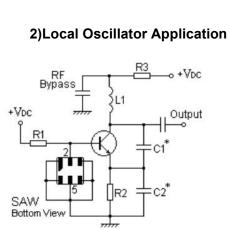
To 50Ω

1 load

R_M C_M

Equivalent LC Model

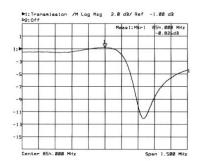

62

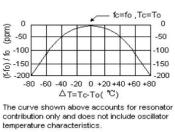


Laser Marking

4. Typical Application Circuits

1) Low-Power Transmitter Application





V.TORCH

5. Typical Frequency Response

6. Temperature Characteristics

7.Performance

7-1.Maximum Ratings

Rating		Value	Unit	
CW RF Power Dissipation	Р	0	dBm	
DC Voltage Between Any two Pins	V _{DC}	±30	V	
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C	
Operating Temperature Range	T _A	-10 to +60	°C	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	fc	853.850		854.150	MHz
	Tolerance from 854.000 MHz	Δfc		±150		kHz
Insertion Loss		١L		1.2	1.8	dB
Quality Factor	Unloaded Q	Qu		11,500		
	50 Ω Loaded Q	QL		1,500		
Temperature Stability	Turnover Temperature	To	25		45	°C
	Turnover Frequency	fo		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C2
Frequency Aging	Absolute Value during the First Year	fA		≪10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
RF Equivalent Motional Resistance RLC Model Motional Inductance Motional Capacitance Shunt Static Capacitance	Motional Resistance	R _M		15	23	Ω
	Motional Inductance	L _M		32.1641		μH
	См		1.0809		fF	
	Shunt Static Capacitance	C ₀	2.2	2.5	2.8	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

V.TORCH

- 1. The center frequency, fc , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature Tc = +25° C \pm 2° C.
- 3. Frequency aging is the change in fc with time and is specified at +65° C or less. Aging may exceed the specification for prolonged temperatures above +65° C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f 0. The nominal frequency at any case temperature, T_c, may be calculated from: f = f 0 [1 FTC (T₀ T_c) 2].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: fc , IL, 3 dB bandwidth, fc versus Tc , and Co .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca