

SAW RESONATOR Part Number : VTR31805

The VTR31805 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic QCC8C case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 318.000 MHz.

1. Package Dimension (QCC8C)

	Pin	Configuration			
2		Terminal1			
	6	Terminal2 Case Ground Empty			
	4, 8				
1,	3, 5, 7				
Sign	Data (unit: mm)	Sign	Data (unit: mm)		
А	2.08	E	1.2		
В	0.6	F	1.35		

G

н

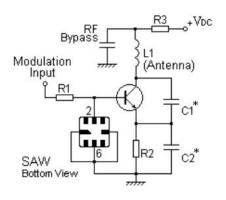
5.0

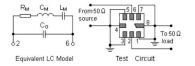
5.0

1.27

2.54

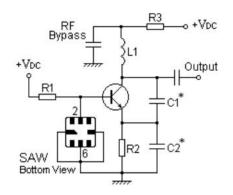

2. Marking


3. Equivalent LC Model and Test Circuit



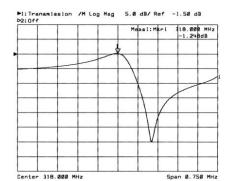
Laser Marking

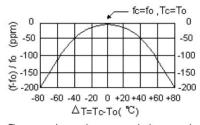
4. Typical Application Circuits



2)Local Oscillator Application

С


D



V.TORCH

5. Typical Frequency Response

6. Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	V _{DC}	±30	v
Storage Temperature Range	T _{stg}	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

Characteristic		Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	317.925		318.075	MHz
	Tolerance from 318.000 MHz	Δf _C		±75		kHz
Insertion Loss		IL.		1.5	2.2	dB
Quality Factor	Unloaded Q	Qu		13,780		
	50 Ω Loaded Q	QL		2,200		
Temperature Stability	Turnover Temperature	To	25		55	°C
	Turnover Frequency	fo		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C2
Frequency Aging Absolute Value during the First Year		fA		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	29	Ω
	Motional Inductance	L _M		131.0940		μН
	Motional Capacitance	См		1.9127		fF
	Shunt Static Capacitance	Co	2.20	2.45	2.70	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

V.TORCH

- 1. The center frequency, fc , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature Tc = +25° C \pm 2° C.
- 3. Frequency aging is the change in fc with time and is specified at +65° C or less. Aging may exceed the specification for prolonged temperatures above +65° C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f 0. The nominal frequency at any case temperature, T_c, may be calculated from: f = f 0 [1 FTC (T₀ T_c) 2].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: fc , IL, 3 dB bandwidth, fc versus Tc , and Co .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca