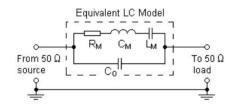


SAW RESONATOR Part Number : VTR303T

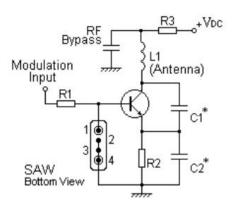
The VTR303T is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile metal F-11 case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 303.875 MHz.


1. Package Dimension (F-11)

Pin	Configuration			
1, 4	Input / Output			
2/3	Case Ground			
Dimensions	Data (unit: mm)			
A	11.0±0.3			
В	4.5±0.3			
С	3.2±0.3			
D	0.45±0.1			
E	5.0±0.5			
F	2.54±0.2			

2. Marking

3. Equivalent LC Model and Test Circuit

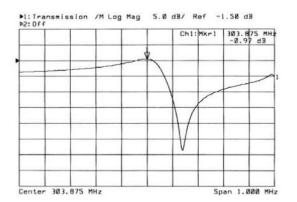


VTR303T

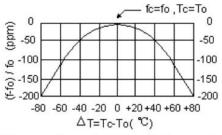

Ink Marking Color: Black or Blue

4. Typical Application Circuits

1) Low-Power Transmitter Application



2)Local Oscillator Application



V.TORCH

5. Typical Frequency Response

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating		Value	Unit	
CW RF Power Dissipation	Р	0	dBm	
DC Voltage Between Any two Pins	V _{DC}	±30	V	
Storage Temperature Range	T _{stg}	-40 to +85	°C	
Operating Temperature Range	T _A	-10 to +60	°C	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	303.800		303.950	MHz
	Tolerance from 303.875 MHz	Δf _C		±75		kHz
Insertion Loss		IL		1.3	1.8	dB
Quality Factor	Unloaded Q	Qu		14,150		
	50 Ω Loaded Q	QL		1,950		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Pins		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		16	23	Ω
	Motional Inductance	L _M		118.5326		μH
	Motional Capacitance	C _M		2.3166		fF
	Pin 1 to Pin 4 Static Capacitance	C ₀	2.3	2.6	2.9	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

V.TORCH

- 1. The center frequency, fc , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature Tc = +25° C \pm 2° C.
- 3. Frequency aging is the change in fc with time and is specified at +65° C or less. Aging may exceed the specification for prolonged temperatures above +65° C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f 0. The nominal frequency at any case temperature, T_c, may be calculated from: f = f 0 [1 FTC (T₀ T_c) 2].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: fc , IL, 3 dB bandwidth, fc versus Tc , and Co .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca