V.TORCH

SAW FILTER

Part Number : VTF86815
The VTF86815 is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a surface-mount ceramic QCC8C case designed to provide front-end selectivity in 868.350 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF , direct conversion and superregen.

1. Package Dimension (QCC8C)

2. Marking

VTF
86815

Laser Marking

4. Typical Frequency Response

Pin	Connection
1	Input $/$ Output
5	Output / Input
$2,3,6,7$	To be Grounded
4,8	Case Ground

Sign	Data (unit: $\mathbf{m m}$)	Sign	Data (unit: mm)
A	2.08	E	1.20
B	0.60	F	1.35
C	1.27	G	5.00
D	2.54	H	5.00

3. Test Circuit

$\mathrm{C}=4 \sim 6 \mathrm{pF}$ *
$\mathrm{L}=2$ turns of 0.5 mm insulated Copper, 3.01 D

V.TORCH

5. Performance

5-1. Maximum Ratings

Rating		Value	Unit
Input Power Level	Pin	10	dBm
DC Voltage	V_{DC}	12	V
Storage Temperature Range	$T_{\text {stg }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{A}	-10 to +60	${ }^{\circ} \mathrm{C}$

5-2. Electronic Characteristics

Characteristic			Minimum	Typical	Maximum	Unit
Center Frequency (center frequency between 3dB points)		$f_{\text {c }}$		868.350		MHz
Insertion Loss		IL	--	3.5	5.0	dB
3dB Pass band		$B W_{3}$		1,200		kHz
Rejection	at $\mathrm{f}_{\mathrm{C}}-21.4 \mathrm{MHz}$ (Image)		30	42	--	dB
	at $\mathrm{f}_{\mathrm{C}}-10.7 \mathrm{MHz}$ (LO)		20	35	--	
	Ultimate		--	60	--	
Temperature	Turnover Temperature	T	25		55	${ }^{\circ} \mathrm{C}$
	Turnover Frequency	f_{0}		f_{C}		MHz
	Frequency Temperature Coefficient	FTC		0.032		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}$
Frequency Aging Absolute Value during the First Year		$\|f A\|$		10		ppm/yr

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

1. The frequency f_{c} is defined as the midpoint between the 3 dB frequencies.
2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR $\leq 1.2: 1$. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_{c}. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
4. Frequency aging is the change in f_{C} with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
5. Turnover temperature, T_{0}, is the temperature of maximum (or turnover) frequency, f_{o}. The nominal frequency at any case temperature, T_{c}, may be calculated from: $f=f_{0}\left[1-F T C\left(T_{0}-T_{c}\right)^{2}\right]$.
6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca
