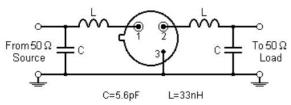


SAW FILTER

Part Number: VTF433B

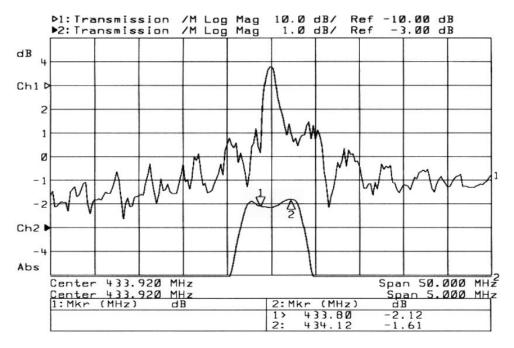
The VTF433B is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a low-profile metal TO-39 case designed to provide front-end selectivity in 433.920 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

1. Package Dimension (TO-39)


Pin	Configuration		
1	Input / Output		
2	Output / Input		
3	Case Ground		

Dimension	Data (unit: mm)		
Α	9.15±0.20		
В	5.08±0.20		
С	3.30±0.20		
D	3±0.20 / 5±0.20		
E	0.45±0.10		

2. Marking


3. Test Circuit

VTF 433B

Color: Black or Blue

4. Typical Frequency Response

5. Performance

5-1. Maximum Rating

Rating		Value	Unit	
Input Power Level	P in	10	dBm	
DC Voltage	$V_{ m DC}$	0	V	
Storage Temperature Range	\mathcal{T}_{stg}	-45 to +120	$^{\circ}$	
Operating Temperature Range	TA	-45 to +120	$^{\circ}$	

5-2. Electronic Characteristics

Reference temperature: T A = -45 ···. +95 ° C

Characteristic		Minimum	Typical	Maximum	Unit
Center Frequency (center frequency between 3dB points)	f _C		433.920		MHz
Insertion Loss 433.80 434.12 MHz	IL		2.0	4.0	dB
3dB Pass bandwidth (relative to IL)	BW ₃	670	730	790	kHz
Pass band (relative to <i>IL</i>) 433.76 434.08 MHz 433.74 434.10 MHz 433.68 434.16 MHz	a_{BW}		1.0 1.0 1.5	2.0 3.0 6.0	dB dB dB
Relative attenuation (relative to <i>IL</i>) 10.00 414.00 MHz 414.00 428.00 MHz 428.00 432.84 MHz 434.92 442.00 MHz 442.00 550.00 MHz 550.001000.00 MHz	$lpha_{ m rel}$	45 35 15 10 35 45	50 40 20 15 40 50		dB dB dB dB dB

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency $f_{\mathbb{C}}$ is defined as the midpoint between the 3dB frequencies.
- Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca