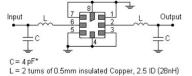


SAW FILTER

Part Number: VTF90235

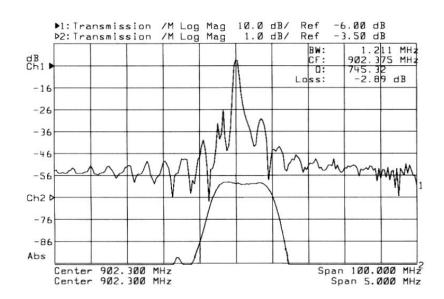
The VTF90235 is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a surface-mount ceramic QCC8C case designed to provide front-end selectivity in 902.300 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

1. Package Dimension (QCC8C)


Pin	Connection		
2	Input / Output		
6	Output / Input		
1, 3, 5, 7	To be Grounded		
4, 8	Case Ground		

Sign	Data (unit: mm)	Sign	Data (unit: mm)		
Α	2.08	E	1.20		
В	0.60	F	1.35		
С	1.27	G 5.00			
D	2.54	Н	5.00		

2. Marking


VTF 90235

3. Test Circuit

Laser Marking

4. Typical Frequency Response

5. Performance

5-1. Maximum Ratings

Rating		Value	Unit	
Input Power Level	Pin	10	dBm	
DC Voltage	$V_{ extsf{DC}}$	12	٧	
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$	
Operating Temperature Range	T _A	-10 to +60	$^{\circ}$	

5-2. Electronic Characteristics

Characteristic			Minimum	Typical	Maximum	Unit
Center Frequency (center frequency between 3dB points)		f _C		902.300		MHz
Insertion Loss		IL		3.5	5.0	dB
3dB Pass band		BW ₃		1,200		kHz
Rejection	at f _C -21.4MHz (Image)		32	45	(3.55.2)	dB
	at f _C -10.7MHz (LO)	,	30	42	_	
	Ultimate			60	-	
Temperature	Turnover Temperature	To	25		55	°C
	Turnover Frequency	f _O		fc		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- The frequency f_C is defined as the midpoint between the 3dB frequencies.
 Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, fc. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 - FTC (T_0 - T_C)^2]$.
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca