

SAW FILTER Part Number : VTF859M

The VTF859M is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a low-profile metal F-11 case designed to provide front-end selectivity in 859.150 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

1. Package Dimension (F-11)

 Dimensions

 A

 B

Pin

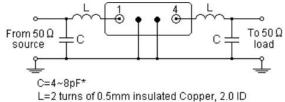
1

4

2/3

В	4.5±0.3				
С	3.2±0.3				
D	0.45±0.1				
E	5.0±0.5				
F	2.54±0.2				

Configuration Input / Output

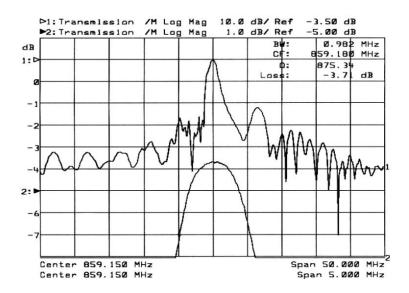

Output / Input

Case Ground

Data (unit: mm)

11.0±0.3

3. Test Circuit



VTF859M

2. Marking

Color: Black or Blue

4. Typical Frequency Response

info@vtorch.ca

5. Performance

5-1. Maximum Rating

Rating	Value	Unit	
CW RF Power Dissipation	Р	10	dBm
DC Voltage Between Any Two Pins	V _{DC}	±30	V
Storage Temperature Range	T_{stg}	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

5-2. Electronic Characteristics

Characteristic			Minimum	Typical	Maximum	Unit
Center Frequency (center frequency between 3dB points)		f _C		859.150		MHz
Insertion Loss		IL		4.0	5.5	dB
3dB Pass band	1	BW ₃		1.0		MHz
Rejection	at f _C -21.4MHz (Image)		40	50	(-13)	dB
	at f _C -10.7MHz (LO)	50 J	25	40		
	Ultimate			60	5 5	
Temperature	Turnover Temperature	To	25		55	°C
	Turnover Frequency	f _O		f _C		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃ ²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- The frequency f_c is defined as the midpoint between the 3dB frequencies.
 Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, fc. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 - FTC (T_0 - T_c)^2]$.
- The specifications of this device are based on the test circuit shown above and subject to change or 6. obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca