

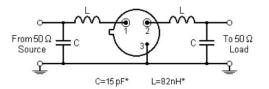

## SAW FILTER

Part Number : VTF295M

The VTF295M is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a low-profile metal TO-39 case designed to provide front-end selectivity in 295.000 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

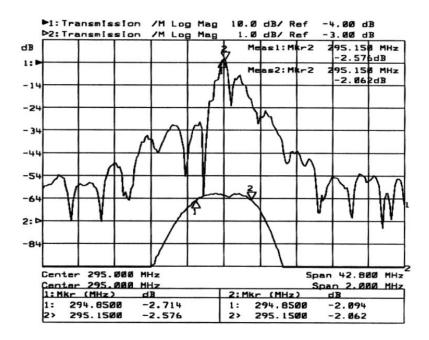
## 1. Package Dimension (TO-39)




| Pin | Configuration  |  |  |
|-----|----------------|--|--|
| 1   | Input / Output |  |  |
| 2   | Output / Input |  |  |
| 3   | Case Ground    |  |  |

| Dimension | Data (unit: mm) |  |  |
|-----------|-----------------|--|--|
| A         | 9.15±0.20       |  |  |
| В         | 5.08±0.20       |  |  |
| С         | 3.30±0.20       |  |  |
| D         | 3±0.20 / 5±0.20 |  |  |
| E         | 0.45±0.10       |  |  |

2. Marking


## 3. Test Circuit





Color: Black or Blue

4. Typical Frequency Response





## 5. Performance

5-1. Maximum Rating

| Rating                          | Value           | Unit       |     |
|---------------------------------|-----------------|------------|-----|
| CW RF Power Dissipation         | Ρ               | +10        | dBm |
| DC Voltage Between Any Two Pins | V <sub>DC</sub> | ±30        | V   |
| Storage Temperature Range       | $T_{stg}$       | -40 to +85 | °C  |
| Operating Temperature Range     | TA              | -10 to +60 | °C  |

5-2. Electronic Characteristics

Reference temperature: T A = 25 °C

Terminating source impedance:  $Z S = 50\Omega$  and matching network

Terminating load impedance:  $Z L = 50\Omega$  and matching network

| Characteristic                                            |                                    | Minimum         | Typical | Maximum | Unit |        |
|-----------------------------------------------------------|------------------------------------|-----------------|---------|---------|------|--------|
| Center Frequency<br>(center frequency between 3dB points) |                                    | f <sub>C</sub>  |         | 295.000 |      | MHz    |
| Insertion Loss                                            |                                    | IL              |         | 3.5     | 5.0  | dB     |
| 3dB Pass band                                             |                                    | BW <sub>3</sub> |         | ±300    |      | kHz    |
| Passband Ripp                                             | ble                                |                 |         |         | ±1.0 | dB     |
| Rejection                                                 | at f <sub>C</sub> -21.4MHz (Image) |                 | 40      | 50      |      | dB     |
|                                                           | at f <sub>C</sub> -10.7MHz (LO)    |                 | 15      | 30      |      |        |
|                                                           | Ultimate                           |                 |         | 60      |      |        |
| Temperature                                               | Turnover Temperature               | To              | 25      |         | 55   | °C     |
|                                                           | Turnover Frequency                 | f <sub>O</sub>  |         | fc      |      | MHz    |
|                                                           | Frequency Temperature Coefficient  | FTC             |         | 0.032   |      | ppm/°C |
| Frequency Aging Absolute Value during the First Year      |                                    | fA              |         | 10      |      | ppm/yr |

**(i)**CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency  $f_c$  is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, fc. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range. 4. Frequency aging is the change in  $f_c$  with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature,  $T_0$ , is the temperature of maximum (or turnover) frequency,  $f_0$ . The nominal frequency at any case temperature, T<sub>c</sub>, may be calculated from:  $f = f_0 [1 - FTC (T_0 - T_c)^2]$ .
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca