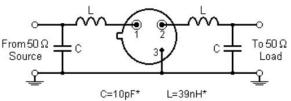


SAW FILTER

Part Number : VTF433M

The VTF433M is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a low-profile metal TO-39 case designed to provide front-end selectivity in 433.920 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

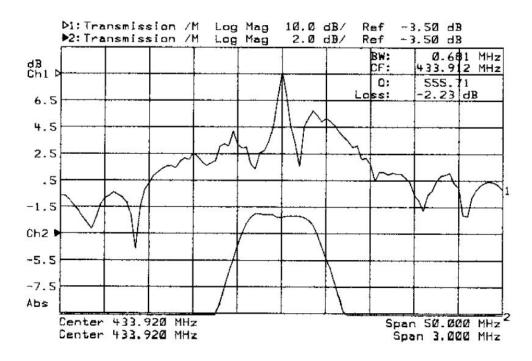
1. Package Dimension (TO-39)



Pin	Configuration		
1	Input / Output		
2	Output / Input		
3	Case Ground		

Dimension	Data (unit: mm)		
A	9.15±0.20		
В	5.08±0.20		
С	3.30±0.20		
D	3±0.20 / 5±0.20		
E	0.45±0.10		

2. Marking


3. Test Circuit

VTF 433M

Color: Black or Blue

4. Typical Frequency Response

5. Performance

5-1. Maximum Rating

Rating	Value	Unit	
CW RF Power Dissipation	Р	+10	dBm
DC Voltage Between Any Two Pins	V _{DC}	±30	V
Storage Temperature Range	T_{stg}	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

5-2. Electronic Characteristics

	Characteristic	1	Minimum	Typical	Maximum	Unit
Center Frequer (center frequer	ncy ncy between 3dB points)	fc		433.920		MHz
Insertion Loss		IL		3.5	5.0	dB
3dB Bandwidth	1.	BW ₃		600	900	kHz
Rejection	at f _C -21.4MHz (Image)		40	50		dB
	at f _C -10.7MHz (LO)		20	30		
	Ultimate		1000	60	a sub	
Temperature	Turnover Temperature	To	25		55	°C
	Turnover Frequency	f _O		fc		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C ²
Frequency Agi	ng Absolute Value during the First Year	fA		10		ppm/yr

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency f_c is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca