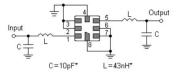


SAW FILTER

Part Number: VTF43445

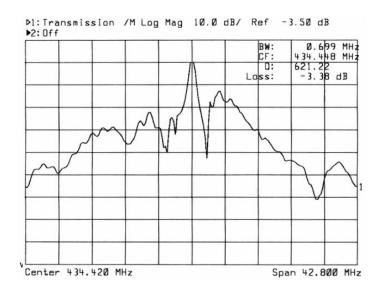
The VTF43445 is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a surface-mount ceramic QCC8C case designed to provide front-end selectivity in 434.420 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

1. Package Dimension (QCC8C)


Pin	Connection	
1	Input	
2	Input Ground	
5	Output	
6	Output Ground	
3, 7	to be Grounded	
4, 8	Case Ground	

Sign	Data (unit: mm)	Sign	Data (unit: mm)
Α	2.08	E	1.20
В	0.60	F	1.35
С	1.27	G	5.00
D	2.54	Н	5.00

2. Marking


VTF 43445

3. Test Circuit

Laser Marking

4. Typical Frequency Response

5. Performance

5-1. Maximum Ratings

Rating		Value	Unit
Input Power Level	Pin	10	dBm
DC Voltage	$V_{ m DC}$	12	V
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$
Operating Temperature Range	TA	-10 to +60	$^{\circ}$

5-2. Electronic Characteristics

	Characteristic		Minimum	Typical	Maximum	Unit
Center Frequer (center frequer	ncy ncy between 3dB points)	f _C		434.420		MHz
Insertion Loss		IL		3.5	5.0	dB
3dB Pass band	1	BW ₃		600		kHz
Rejection	at f _C -21.4 MHz (Image)	32	40	50	SS	dB
	at f _C -10.7 MHz (LO)		18	28	1. 1. 1.	
	Ultimate	-1)		60	-	
	Turnover Temperature	To	25		55	℃
MACOULT PRODUCTION OF THE PARTY.	Turnover Frequency	f _O		f _C		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Agi	ng Absolute Value during the First Year	fA		10		ppm/yr

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency fc is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C, may be calculated from: f = f₀ [1 FTC (T₀ T_C)²].
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca