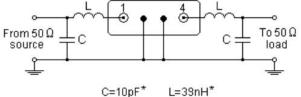


SAW FILTER Part Number : VTF430B

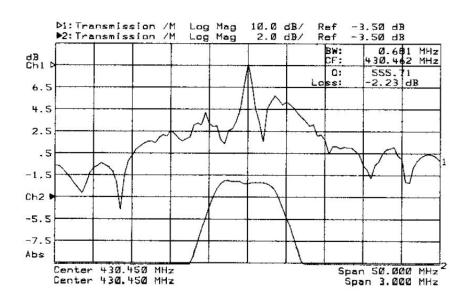
The VTF430B is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a low-profile metal F-11 case designed to provide front-end selectivity in 430.450 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

1. Package Dimension (F-11)

PinConfiguration1Input / Output4Output / Input2/3Case Ground


Dimensions	Data (unit: mm)				
А	11.0±0.3				
В	4.5±0.3				
С	3.2±0.3				
D	0.45±0.1				
E	5.0±0.5				
F	2.54±0.2				

2. Marking


VTF430B

Color: Black or Blue

3. Test Circuit

4. Typical Frequency Response

5. Performance

5-1. Maximum Rating

Rating	Value	Unit	
CW RF Power Dissipation		10	dBm
DC Voltage Between Any Two Pins	V _{DC}	±30	V
Storage Temperature Range	T_{stg}	-40 to +85	°C
Operating Temperature Range	TA	-10 to +60	°C

5-2. Electronic Characteristics

Characteristic			Minimum	Typical	Maximum	Unit
Center Frequency (center frequency between 3dB points)		f _C		430.450		MHz
Insertion Loss		IL		3.0	4.5	dB
3dB Bandwidth	ĺ.	BW ₃		600		kHz
Rejection	at f _C -21.4MHz (Image)		40	50		dB
	at f _c -10.7MHz (LO)		20	30		
	Ultimate			60		
Temperature	Turnover Temperature	To	25		55	°C
	Turnover Frequency	fo		f _C		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃ ²
Frequency Aging Absolute Value during the First Year		fA		10		Ppm/yr

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca