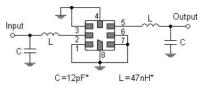


SAW FILTER Part Number : VTF39505

The VTF39505 is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a surface-mount ceramic QCC8C case designed to provide front-end selectivity in 395.000 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

1. Package Dimension (QCC8C)

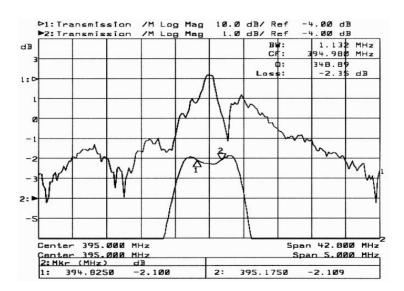


2. Marking

Pin	Connection	
2	Input	
5	Output	
1, 3, 6, 7	To be Grounded	
4, 8	Case Ground	

Sign Data (unit: mm)		Sign	Data (unit: mm)		
А	2.08	E	1.20		
В	0.60	F	1.35		
С	1.27	G	5.00		
D	2.54	Н	5.00		

3. Test Circuit



Laser Marking

VTF

39505

4. Typical Frequency Response

5. Performance

5-1. Maximum Ratings

Rating		Value	Unit	
Input Power Level	Pin	10	dBm	
DC Voltage	V _{DC}	12	V	
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C	
Operating Temperature Range	TA	-10 to +60	°C	

5-2. Electronic Characteristics

	Characteristic		Minimum	Typical	Maximum	Unit
Center Frequer (center frequer	ncy ncy between 3dB points)	f _C		395.000		MHz
Insertion Loss		IL		2.5	4.5	dB
3dB Pass band	1	BW ₃		±550		kHz
Rejection	at f _C -21.4 MHz (Image)		38	50		dB
	at f _C —10.7 MHz (LO)		28	45		
	Ultimate			60		
	Turnover Temperature	To	25		55 °C	°C
Temperature	Turnover Frequency	fo		f _C		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C ²
Frequency Agi	ng Absolute Value during the First Year	fA		10		ppm/yr

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca