


#### SAW FILTER

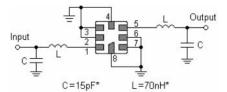
Part Number: VTF30315

The VTF30315 is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter in a surface-mount ceramic QCC8C case designed to provide front-end selectivity in 303.825 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

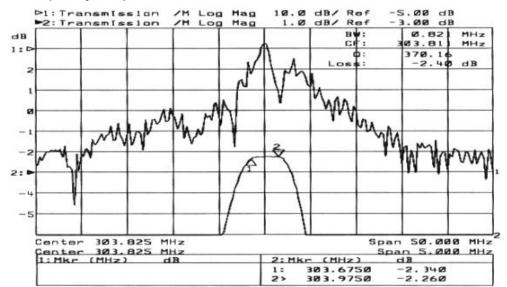
## 1. Package Dimension (QCC8C)



| Pin  | Connection     |  |  |
|------|----------------|--|--|
| 1    | Input          |  |  |
| 2    | Input Ground   |  |  |
| 5    | Output         |  |  |
| 6    | Output Ground  |  |  |
| 3, 7 | to be Grounded |  |  |
| 4, 8 | Case Ground    |  |  |


| Sign | Data (unit: mm) | Sign | Data (unit: mm) |  |  |
|------|-----------------|------|-----------------|--|--|
| Α    | 2.08            | E    | 1.20            |  |  |
| В    | 0.60            | F    | 1.35            |  |  |
| С    | 1.27            | G    | 5.00            |  |  |
| D    | 2.54            | Н    | 5.00            |  |  |

## 2. Marking


# VTF 30315

Laser Marking

## 3. Test Circuit



## 4. Typical Frequency Response





#### 5. Performance

#### 5-1. Maximum Ratings

| Rating                      |                | Value      | Unit          |
|-----------------------------|----------------|------------|---------------|
| Input Power Level           | Pin            | 10         | dBm           |
| DC Voltage                  | $V_{ m DC}$    | 12         | V             |
| Storage Temperature Range   | $T_{ m stg}$   | -40 to +85 | $^{\circ}$    |
| Operating Temperature Range | T <sub>A</sub> | -10 to +60 | ${\mathbb C}$ |

### 5-2. Electronic Characteristics

|                                  | Characteristic                          |                 | Minimum | Typical        | Maximum | Unit       |
|----------------------------------|-----------------------------------------|-----------------|---------|----------------|---------|------------|
| Center Freque<br>(center frequer | ncy<br>ncy between 3dB points)          | f <sub>C</sub>  |         | 303.825        |         | MHz        |
| Insertion Loss                   |                                         | IL              | -       | 3.0            | 4.5     | dB         |
| 3dB Pass band                    | 1                                       | BW <sub>3</sub> |         | 600            | 900     | kHz        |
| Rejection                        | at f <sub>C</sub> -21.4 MHz (Image)     |                 | 40      | 50             |         | dB         |
|                                  | at f <sub>C</sub> -10.7 MHz (LO)        |                 | 20      | 30             |         |            |
|                                  | Ultimate                                |                 | 2.44    | 60             | 222     |            |
| Temperature                      | Turnover Temperature                    | To              | 25      |                | 55      | $^{\circ}$ |
|                                  | Turnover Frequency                      | f <sub>O</sub>  |         | f <sub>C</sub> |         | MHz        |
|                                  | Frequency Temperature Coefficient       | FTC             |         | 0.032          |         | ppm/℃²     |
| Frequency Agi                    | ng Absolute Value during the First Year | fA              |         | 10             |         | ppm/yr     |

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency f<sub>C</sub> is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f<sub>C</sub>. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f<sub>C</sub> with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T<sub>0</sub>, is the temperature of maximum (or turnover) frequency, f<sub>0</sub>. The nominal frequency at any case temperature, T<sub>C</sub>, may be calculated from: f = f<sub>0</sub> [1 FTC (T<sub>0</sub> T<sub>C</sub>)<sup>2</sup>].
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca