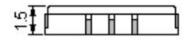


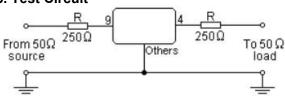
SAW FILTER


Part Number: VTF11059

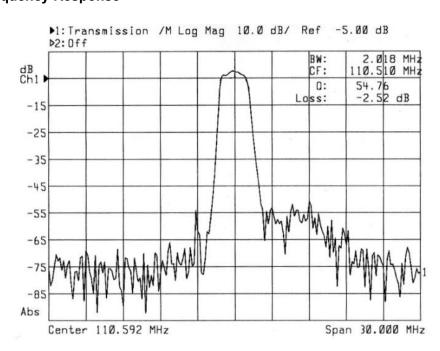
The VTF11059 is a low-loss, compact, and economical surface-acoustic-wave (SAW) IF filter in a surface-mount ceramic SMP-03 case with center frequency 110.592 MHz

1. Package Dimensions (SMP-03)

Pin	Configuration			
9	Input			
4	Output			
Others	Ground			



2. Marking


VTF11059

Laser Marking

3. Test Circuit

4. Typical Frequency Response

5. Performance

5-1. Maximum Ratings

Rating	Value	Unit	
Input Power Level	P 10		dBm
DC Voltage	$V_{ t DC}$	0	٧
Operable Temperature Range	TA	-10 to +65	$^{\circ}$
Storage Temperature Range	\mathcal{T}_{stg}	-40 to +85	$^{\circ}$

5-2. Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Unit		
Nominal Center Frequency	f _C	1	110.592		MHz		
User Signal Band	BW		±576	-	kHz		
Insertion Loss	IL	-	3.5	4.5	dB		
Relative Attenuation (relative to IL)	$\alpha_{\rm rel}$						
 f_C − 5.0MHz 	100000000	50	62		dB		
2) f _C - 3.5MHz		42	50		dB		
 f_C ± 2.0MHz 		30	40	-	dB		
4) $f_{\rm C} + 3.5 {\rm MHz}$		40	52		dB		
5) $f_C + 5.0MHz$		40	50		dB		
Group delay ripple (p-p)	Δτ						
$f_{\rm C}$ - 576 kHz $f_{\rm C}$ + 576 kHz			0.4	0.7	μs		
Input / Output Impedance (Nominal)		300Ω // 1.2μΗ					

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency $f_{\mathbb{C}}$ is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 6. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 7. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca.